

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django Gears 0.7.1 documentation

Django Gears

This application provides integration with Django [http://www.djangoproject.com] and Gears [http://gears.readthedocs.org/en/latest/]. Gears is
a Python application that compiles and concatenates JavaScript and CSS
assets. Inspired by Ruby’s Sprockets.

Source code is available on github: https://github.com/gears/django-gears

Contents

	Installation
	Get the code

	Add to settings

	Configure development urls

	Moving on

	Tutorial
	The assets directories

	Using directives

	Adding scripts and css to templates

	Asset finders
	Application finder

	File System Finder

	Configuring finders

	Asset views
	Serving assets in development

	Gears urlpatterns

	Asset template tags
	Loading assets

	Debug settings

	Asset compilers and processors
	1. Preprocess

	2. Compile

	3. Postprocess

	4. Compress

	5. Save to filesystem

	Deploying
	Collecting assets

	Defining public assets

	Serving files with your web server

	Settings
	GEARS_CACHE

	GEARS_COMPRESSORS

	GEARS_COMPILERS

	GEARS_DEBUG

	GEARS_DIRS

	GEARS_FINDERS

	GEARS_FINGERPRINTING

	GEARS_GZIP

	GEARS_MIMETYPES

	GEARS_POSTPROCESSORS

	GEARS_PREPROCESSORS

	GEARS_PUBLIC_ASSETS

	GEARS_REGISTER_ENTRY_POINTS

	GEARS_ROOT

	GEARS_URL

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Installation

Get the code

You can install Django Gears with pip [http://www.pip-installer.org/]:

$ pip install django-gears

It’s strongly recommended to install Django Gears within an activated
virtualenv [http://virtualenv.org/].

If you want to work with the latest version of Django Gears, install it from
the public repository:

$ pip install -e git+https://github.com/gears/django-gears@develop#egg=django-gears

Add to settings

Add django_gears to your INSTALLED_APPS settings:

INSTALLED_APPS = (
 # ...
 'django_gears',
 # ...
)

Configure development urls

from django_gears.urls import gears_urlpatterns

url definitions here

urlpatterns += gears_urlpatterns()

Note

If you use Django’s staticfiles_urlpatterns [https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#django.contrib.staticfiles.urls.staticfiles_urlpatterns], you should replace that
with gears_urlpatterns. Django Gears falls back to serving static files
when matching assets aren’t found.

Moving on

Congratulations. You have a working installation. Now, continue to the
tutorial to learn how to use Gears in your templates.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Tutorial

The assets directories

Django Gears searches for assets in the defined assets directories.
By default, this includes all assets folders defined in your installed
applications. You’ll find this approach familiar if you’ve used Django’s
application template loader or static files finder.

For this tutorial, imagine you have an assets directory like this:

assets/
 css/
 buttons.css
 styles.css
 js/
 script.js
 app.js
 vendor/
 jquery.js
 underscore.js

Using directives

The primary Gears preprocessor is based on directives. Directives are
a way to handle dependencies in your css and scripts.

For example, script.js in the example folder may look like this:

/* Dependencies:
 *= require ../vendor/jquery
 *= require ../vendor/underscore
 *= require app
*/

Each line that starts with *= is a directive. Directives let you
include files, trees, or directory contents into a single file. Directives
are always relative to the file that contains them.

For another example, the style.css file may look like this:

/* Dependencies:
 *= require buttons
 *= require_self
*/

more styles here

You can see a list of available directives here [https://github.com/gears/gears#features].

Adding scripts and css to templates

Now that the script.js and styles.css files are defined they can be
included in your templates. You can do this with the {% gears %}
template tags.

{% load gears %}
{% css_asset_tag "css/style.css" %}
{% js_asset_tag "js/script.js" %}

What happened?

Gears will construct link or script tags to the proper assets. When using
the gears_urlpatterns(), the django_gears.views.serve() view will be
called. This will process and serve the assets at the time of the request.
You can edit the assets and reload the page to immediately see the changes.

For production, the assets will be pre-built using the collectassets
command. The urls will point to these files that should be served as
static files by the web server. We’ll discuss this more later.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Asset finders

Django Gears searches for assets to build in the defined assets directories.
By default, this includes:

	all assets directories in your installed applications

	all assets directories listed in the GEARS_DIRS setting

We’ll cover how both of these work below.

Application finder

Consider a directory structure like the following, where myapp1
and myapp1 are installed applications:

myapp1/
 assets/
 js/
 script.js
 app.js

myapp2/
 assets/
 js/
 test.js

Next, consider that script.js has the following directives:

/*
 *= require test
 *= require app
*/

When script.js is processed it will include test.js from myapp2 and
app.js from myapp1.

How does this happen?

Directives, as written, are always relative to the asset file. The idea of
relative isn’t solely based on the filesystem, though. In the above example,
both myapp1/assets and myapp2/assets are on the search paths. This
means when test.js isn’t found in the current directory, the directive
processor continues on through the rest of the directories on the search
path. Here, it is found in myapp2.

Note, Gears will use the first asset it finds that matches the given path.
Therefore, if you have multiple assets whose name and location is the same,
Gears won’t distinguish between them. The easiest way to ensure this doesn’t happen is to place assets in custom
named directories within the assets folder.

File System Finder

In addition to the application finder, Django Gears will look for static
files in specified directories in the filesystem. These directories are
controlled through the GEARS_DIRS setting.

For example, you may add an assets directory in your project root:

import os
SITE_ROOT = os.path.realpath(os.path.dirname(__file__))
GEARS_DIRS = (
 os.path.join(SITE_ROOT, "assets"),
)

By default, the file system finder has precedence over the application
finders.

Configuring finders

If you want to configure or add custom finders of your own, see the
docs on the GEARS_FINDERS setting.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Asset views

Serving assets in development

	
django_gears.views.serve(request, path, **kwargs)

	

Django Gears provides the serve() view for use in development.
This view will process and serve any matching assets on the fly. This means
you can simply reload your pages to see the latest changes.

Further, if no matching asset is found, serve() falls back to Django’s
staticfiles.views.serve view. This means your application can happily
serve static files alongside Gear’s assets.

The easiest way to make use of the serve() view in your application
is to use the included gears_urlpatterns() function.

from django_gears.urls import gears_urlpatterns

url definitions here

urlpatterns += gears_urlpatterns()

Sites using these urlpatterns will not need to use Django’s staticfiles urlpatterns [https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#django.contrib.staticfiles.urls.staticfiles_urlpatterns].

Warning

Like staticfiles_urlpatterns, gears_urlpatterns only registers
patterns when settings.Debug is True. This isn’t for production
use. See the Deployment docs for more information.

Gears urlpatterns

	
django_gears.urls.gears_urlpatterns(prefix=None)

	Returns development urlpatterns for serving assets.

If settings.DEBUG is false, the returned urlpatterns will be empty.

	Parameters:	prefix – The url prefix to server assets under. Defaults to the GEARS_URL setting.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Asset template tags

Loading assets

Django Gears provides two template tags for use in templates: one for
css and one for javascript.

The usage of these tags looks like:

{% load gears %}
{% css_asset_tag "css/style.css" %}
{% js_asset_tag "js/script.js" %}

This outputs script and link tags like the following:

<link rel="stylesheet" href="/<staticroot>/css/style.5d9fedbb2fdb499586390e3969277fe4208122b8.css">
<script src="/<staticroot>/js/script.2b4ef7ddce5b87d9b7fe6c7b5df40d32b923359f.js"></script>

Debug settings

If GEARS_DEBUG is true, the directives will not be processed
into a single file. Instead, each asset will be processed and linked to
individually.

For example, consider the directives:

/*
 *= require jquery
 *= require underscore
*/

The output when GEARS_DEBUG is true looks like:

<script src="/<staticroot>/jquery.js?body=1&v=1396028840.58"></script>
<script src="/<staticroot>/underscore.js?body=1&v=1396035841.85"></script>
<script src="/<staticroot>/script.js?body=1&v=1396035841.85"></script>

This behavior can also be triggered from within a template by adding a
debug argument to the asset tags:

{% css_asset_tag "css/style.css" debug %}
{% js_asset_tag "js/script.js" debug %}

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Asset compilers and processors

The asset building process consists of multiple steps. At it’s simplest,
only the directives are processed and dependencies are included into the
build files. The build process can do much more though, like compiling
less files with lessjs or compressing js files with uglifyjs.

Each build follows these fives steps that can be customized for your
environment.

	Preprocess

	Compile

	Postprocess

	Compress

	Save to filesystem

1. Preprocess

The first step is where dependencies are managed. Gears looks for
directives within assets and includes them within the asset file. As
explained elsewhere, directives are simple comments in the header of
script or css files. For example:

/*
 *= require jquery
 *= require underscore
 *= require backbone
*/

It’s not common to change the preprocess step, but if you wish to do
so, this can be done by modifying the GEARS_PREPROCESSORS
setting.

2. Compile

The second step compiles source files like CoffeeScript, Stylus, or Less
into javascript and css. Compilers are defined in the
GEARS_COMPILERS setting.

Various compilers are just a pip install away. You can browse plugins
that are available at the Gears repositories github page [https://github.com/gears/]. If you find
a compiler not supported, it’s easy to create a plugin of your own.

3. Postprocess

The third step is where files are postprocessed. By default, Django Gears
runs the gears.processors.HexdigestPathsProcessor for css files. This
processor replaces url declarations in the css with fingerprinted
versions. Note, this processor only works if all paths in url
declarations refer to local files.

The post processors can be modified with the GEARS_POSTPROCESSORS
setting.

4. Compress

The fourth step is where tools like SlimIt, UglifyJS, or clean-css are run.
These produce minified files and minimize bandwidth requirements.

For users of Python 2.X, Gears has built-in support for SlimIt and cssmin.

Other compilers are just a pip install away. You can browse plugins
that are available at the Gears repositories github page [https://github.com/gears/].

5. Save to filesystem

The fifth step is where processed files are saved to the file system.
The destination directory is controlled by the GEARS_ROOT
setting.

Unless GEARS_FINGERPRINTING is set to false, the asset will be
fingerprinted and added to the .manifest.json file.

During this step, the file can optionally be gzipped. This is controlled
by the GEARS_GZIP setting.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Gears 0.7.1 documentation

Deploying

The gears_urlpatterns() work great in development,
but you don’t want to build files during the request cycle in production.
Instead, the files should be built once and served as static files by your
web server. The collectassets command lets you do that.

Collecting assets

The collectassets command is a Django management command [https://docs.djangoproject.com/en/dev/ref/django-admin/] that is
invoked using the manage.py script:

python manage.py collectassets

This command collects all public assets, processes them, and saves them to
the directory specified by the GEARS_ROOT setting.

In addition to processing the assets, Gears adds a .manifest.json file
to the directory root. An example manifest file looks like:

{
 "files": {
 "css/styles.css": "css/style.588bb73e7fff720ac360b924fd9b33ddd2fa71c7.css",
 "js/script.js": "js/script.d78f84d27230e157031fc8ed26d1099f44d878dd.js"
 }
}

This file is a map between asset names and processed files. When an
asset is included using a {% gears %} tag in production, instead of
producing a url to the development view, it produces a url to the asset as
specified in the manifest file.

Defining public assets

Note

Note, that since Gears 0.7.1 there is public directive, which you
can use to mark assets as public:

//= public

When collectassets is run, Gears will only process assets that are
public. Gears considers any asset public that matches the
GEARS_PUBLIC_ASSETS setting.

For instance, you may have a script.js file that includes many dependencies.
After processing script.js, there is no need to Gears to additionally
process the individual dependencies and collect them as separate files
into GEARS_ROOT. This is an optimization that results in faster
build times.

The default rules for collecting public assets:

	include all files that either aren’t css or javascript or aren’t set to
compile to css or javascript (less, style, coffee, etc.)

	include css/style.css

	include js/script.js

If you namespace your assets, or use a different naming convention, you’ll
want to specify your own public asset patterns. For instance, if you want
to process all files mapping to site.css or site.js, you could do:

GEARS_PUBLIC_ASSETS = (
 lambda path: not any(path.endswith(ext) for ext in ('.css', '.js')),
 r'site\.css$',
 r'site\.js$',
)

Serving files with your web server

By default, Django Gears collects assets into the STATIC_ROOT
directory. If your web server is configured to serve static files already,
no additional configuration is needed. If you haven’t configured this,
you can follow Django’s advice on deploying static files [https://docs.djangoproject.com/en/dev/howto/static-files/deployment/] or use a
wsgi app like dj‑static [https://github.com/kennethreitz/dj-static].

If you specify a custom directory in GEARS_ROOT, you’ll need to
update your server accordingly.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Django Gears 0.7.1 documentation

Settings

GEARS_CACHE

This defines the cache used in the Gears environment. The default
values is gears.cache.SimpleCache.

GEARS_COMPRESSORS

A mapping of mimetype to compressors. For example:

GEARS_COMPRESSORS = {
 'application/javascript': 'gears_uglifyjs.UglifyJSCompressor',
 'text/css': 'gears_clean_css.CleanCSSCompressor',
}

By default, this setting is equal to {}. No compressors are defined.

GEARS_COMPILERS

A mapping of file extension to compilers. For example:

GEARS_COMPILERS = {
 '.styl': 'gears_stylus.StylusCompiler',
 '.coffee': 'gears_coffeescript.CoffeeScriptCompiler',
}

By default, this setting is equal to {}. No compilers are defined.

GEARS_DEBUG

Whether Gears is in debug mode or not. Defaults to the value of
settings.DEBUG. This affects how the template tags process assets.
See the Asset template tags docs for more information.

GEARS_DIRS

The list of directories to search for assets. This is used when the
gears.finders.FileSystemFinder is specified in
GEARS_FINDERS. Defaults to []. No directories are defined.

GEARS_FINDERS

The list of finders to use when searching for assets. The default finders
are:

GEARS_FINDERS = (
 ('gears.finders.FileSystemFinder', {
 'directories': getattr(settings, 'GEARS_DIRS', ()),
 }),
 ('django_gears.finders.AppFinder', {}),
)

GEARS_FINGERPRINTING

Whether Gears should save a fingerprinted version of the asset in the
build directory. A fingerprint is based on the contents of the file and
thus unique for each version of it. Fingerprinted files are also added to
the .manifest.json file. Defaults to True.

GEARS_GZIP

Whether Gears should gzip processed files at the end of the build process.
Defaults to False.

GEARS_MIMETYPES

The mimetypes for asset file extensions. Mimetypes are used by post and
preprocessors as well as compressors. The default mimetypes are:

GEARS_MIMETYPES = {
 '.css': 'text/css',
 '.js': 'application/javascript',
}

GEARS_POSTPROCESSORS

The list of postprocessors to run when assets are served or collected.
The default postprocessors are:

GEARS_POSTPROCESSORS = {
 'text/css': 'gears.processors.HexdigestPathsProcessor',
}

GEARS_PREPROCESSORS

The list of preprocessors to run when assets are served or collected. The
default preprocessors handle dependency management through directives.

GEARS_PREPROCESSORS = {
 'text/css': 'gears.processors.DirectivesProcessor',
 'application/javascript': 'gears.processors.DirectivesProcessor',
}

GEARS_PUBLIC_ASSETS

Note

Note, that since Gears 0.7.1 there is public directive, which you
can use to mark assets as public:

//= public

The patterns that define public assets. Only assets matching one of these
patterns will be processed when collectassets is run. The default
values are:

GEARS_PUBLIC_ASSETS = (
 lambda path: not any(path.endswith(ext) for ext in ('.css', '.js')),
 r'^css/style\.css$',
 r'^js/script\.js$',
)

Each pattern can either be a regular expression or a function that takes a
path and returns a boolean.

GEARS_REGISTER_ENTRY_POINTS

If set to True plugins will be searched and registered using entry
points [http://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins]. False by default.

GEARS_ROOT

The directory where built assets are stored. Defaults to
settings.STATIC_ROOT.

GEARS_URL

The url to serve processed assets under. Defaults to settings.STATIC_URL.

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Django Gears 0.7.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_gears	

 	
 	
 django_gears.urls	

 	
 	
 django_gears.views	

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Django Gears 0.7.1 documentation

Index

 D
 | G
 | S

D

 	

 	django_gears.urls (module)

 	

 	django_gears.views (module)

G

 	

 	
 GEARS_CACHE

 	

 	setting

 	
 GEARS_COMPILERS

 	

 	setting

 	
 GEARS_COMPRESSORS

 	

 	setting

 	
 GEARS_DEBUG

 	

 	setting

 	
 GEARS_DIRS

 	

 	setting

 	
 GEARS_FINDERS

 	

 	setting

 	
 GEARS_FINGERPRINTING

 	

 	setting

 	
 GEARS_GZIP

 	

 	setting

 	

 	
 GEARS_MIMETYPES

 	

 	setting

 	
 GEARS_POSTPROCESSORS

 	

 	setting

 	
 GEARS_PREPROCESSORS

 	

 	setting

 	
 GEARS_PUBLIC_ASSETS

 	

 	setting

 	
 GEARS_REGISTER_ENTRY_POINTS

 	

 	setting

 	
 GEARS_ROOT

 	

 	setting

 	
 GEARS_URL

 	

 	setting

 	gears_urlpatterns() (in module django_gears.urls)

S

 	

 	serve() (in module django_gears.views)

 	

 	
 setting

 	

 	GEARS_CACHE

 	GEARS_COMPILERS

 	GEARS_COMPRESSORS

 	GEARS_DEBUG

 	GEARS_DIRS

 	GEARS_FINDERS

 	GEARS_FINGERPRINTING

 	GEARS_GZIP

 	GEARS_MIMETYPES

 	GEARS_POSTPROCESSORS

 	GEARS_PREPROCESSORS

 	GEARS_PUBLIC_ASSETS

 	GEARS_REGISTER_ENTRY_POINTS

 	GEARS_ROOT

 	GEARS_URL

 Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Django Gears 0.7.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Gears.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

